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ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative brain disease which does not currently have a fully known treatment. Research over the 
past 30 years has provided numerous treatment options to correct the underlying neurodegenerative pathology. The drugs investigated in 
these studies focus on Amyloid beta (Aβ) muscle acceleration, which prevents the accumulation of amyloid aggregates. Despite many critical 
discoveries, failures in late-phase clinical trials indicated that targeting Aβ pathology alone is not effective in altering disease progression. 
These discouraged researchers were prompted to search for new approaches, one of which was intranasal release methods. In this review, 
intranasal drug administration for the treatment of AD and the effects of insulin, erythropoietin, exosome, mesenchymal stem cells, and 
rifampicin administered by this route on AD will be discussed. It is foreseen that definitive treatment possibilities can be developed by further 
investigating this method.
Keywords: Alzheimer's disease, erythropoietin, exosome, insulin, intranasal administration, mesenchymal stem cells, rifampicin.

Alzheimer’s disease (AD) generally affects 
individuals over age 65. With the growing 
elderly population, prevalence of the disease 
has increased.[1] While this has led to increased 
efforts to develop treatment, there is no definitive 
treatment of the disease.[2,3] More than 200 
therapeutic agents have been evaluated as a result 
of studies, and no new drug has been approved 
by the FDA for the treatment of the disease since 
2003.[4,5] Many speculations have been made 
regarding the failure of the applied treatments. 
The most important of these are the wrong choice 
of main treatment goals and misinterpretation of 
AD pathophysiology.[6]

Research suggests that the characteristic 
amyloid plaques and tau nodes in the brain are 

not a cause but an effect. Alzheimer's disease 
is a result of neuroinflammation and brain 
wound healing gone awry.[7] This neurologic 
circumstance results in cognitive and behavioral 
disorders. Conventional treatment strategies, 
such as acetylcholinesterase inhibitor drugs, are 
often ineffective due to their poor solubility, 
low bioavailability, and inability to permeate 
the blood-brain barrier.[8] These limitations 
associated with current therapy draw attention to 
the intranasal strategy. This strategy seems to be 
a promising route for the delivery of drugs to the 
brain.[9] Recent studies examine direct intranasal 
delivery of drug groups to the central nervous 
system (CNS) rather than oral or parenteral 
routes.[9]

Received: November 05, 2020  Accepted: November 20, 2020   Published online: December 16, 2020

Correspondence: Müge İpek Konaklı. Deneysel Tıp Enstitüsü, 41470 Gebze-Kocaeli, Türkiye.
Tel: +90 530 - 225 51 89   e-mail: mugeipekkonakli@gmail.com

Cite this article as:
İpek Konaklı M, Atasoy Ö, Erbaş O. Intranasal applications in Alzheimer's treatment. D J Med Sci 2020;6(3):157-165.

Intranasal applications in Alzheimer's treatment

Müge İpek Konaklı1, Özüm Atasoy2, Oytun Erbaş1,3

1Institute of Experimental Medicine, Gebze-Kocaeli, Turkey
2Department of Radiation Oncology, Kartal Dr. Lütfi Kırdar City Hospital, Istanbul Turkey

3Department of Physiology, Medical Faculty of Demiroğlu Bilim University, Istanbul, Turkey

https://orcid.org/0000-0002-6171-8580
https://orcid.org/0000-0001-5115-7815
https://orcid.org/0000-0002-2515-2946


D J Med Sci158

Intranasal Drug 
aDmInIstratIon In the 

treatment of alzheImer's 
DIsease

Intranasal drug administration has emerged as 
an alternative to oral and parenteral routes. Since 
the olfactory nerve cells and trigeminal nerves 
are in direct contact with both the peripheral 
and the CNS, intranasally administration is a 
non-invasive method for allowing drugs to pass 
the blood brain barrier (BBB).[9] Accordingly, 
drugs can directly pass from the olfactory region 
and respiratory epithelium to the brain.[10,11] 
Thus, the treatment of neurological disorders 
is targeted.[12] Advantages compared to other 
drug administration routes include rapid onset of 
action, avoidance of the presystemic metabolism 
of the intestines and liver, reduced systemic 
exposure, direct administration to the brain and 
cerebrospinal fluid (CSF), ease of application, 
and better patient compliance.[9] Limitations of 
this route include weak nasal permeability and 
mucociliary clearance.[13] Studies show that drugs 
administered into the nasal cavity must have a 
more prolonged residence time to overcome nasal 
mucociliary clearance.[14]

Transport of drugs across the nasal barriers 
occurs intracellularly or extracellularly. The first 
step in intranasal transport is endocytosis to 
olfactory sensory neurons and then trigeminal 
ganglion cells respectively.[15] This pathway is 
referred to as intraneuronal transport. Since it 
is very slow, it may take 24 hours after nasal 
administration for agents to reach the CNS.[16] 
Then, intracellular transport to the olfactory bulb 
and the brain stem occurs. Transcytosis occurs 
by passive diffusion or by receptor-mediated 
endocytosis throughout the intracellular space 
and basolateral membrane. Diffusion into the 
olfactory bulb throughout the extracellular 
pathway associated with olfaction takes about 
0.73-2.3 hours. Diffusion into the brain stem 
takes approximately 17-56 hours.[15] Substances 
acquired through this pathway are distributed 
through the nasal membranes to the blood, 
then to the olfactory mucosa and eventually to 
the CNS. This pathway is less effective than 
the transcellular route and is dependent on the 
molecular weight and size of the drug.[17] However, 
this mechanism is faster and allows drugs with low 

molecular weight to be delivered to the CNS in a 
few minutes.[18]

Nasal drugs can be cleared in the nasal cavity 
thanks to mucociliary clearance. The drug that 
enters blood circulation can be cleared with 
normal clearance mechanisms or may pass the 
BBB into the brain. The challenging aspect 
of application is ensuring adequate therapeutic 
levels of drug delivery to target areas of the brain. 
The drug’s localization in the brain must target 
necessary receptors for managing CNS diseases 
such as Parkinson's disease, schizophrenia, AD, 
brain tumors, meningitis, and migraine.[9]

This method, proposed by Frey in 1989 for the 
treatment of AD and other CNS disorders,[19] is a 
promising approach for the delivery of existing 
drugs and alternative therapy molecules in AD.[9]

Intranasally aDmInIstereD 
agents In alzheImer's 

treatment
Insulin

The use of intranasal insulin in AD has been 
investigated. Studies have proven that intranasally 
administered insulin is rapidly distributed 
throughout the brain at the cribriform plate level 
and reverses learning and memory loss in the 
AD mouse model. Intranasal insulin poorly enters 
the bloodstream and has no peripheral metabolic 
effects. Protein kinase-C (PKC) inhibition occurs 
as a result of uptake from the cribriform plate into 
the brain. Thus, cellular pathway inhibitors play a 
role in the transport of insulin in the blood-brain 
barrier. These results suggest that the intranasal 
route is an effective means of delivering insulin to 
the brain.[20]

Patients with AD have reduced insulin 
receptor sensitivity in the brain.[21,22] Insulin has 
important functions in the CNS. Insulin receptors 
in the brain are found in the olfactory bulb, 
hypothalamus, hippocampus, cerebral cortex, 
and cerebellum.[23] Insulin signaling contributes 
to synaptogenesis and synaptic remodeling.[24] 
Acute uptake of insulin into the hippocampus 
improves spatial memory in a dependent manner 
on phosphatidylinositol 3-kinase (PI3K) by 
modulating glucose utilization.[25]

Intranasal administration or perfusion of 
insulin to healthy individuals improves cognitive 
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function.[26,27] Intranasal insulin administration 
before anesthesia prevented AD-like tau 
hyperphosphorylation in a widely used transgenic 
mouse model of AD.[28] Tau hyperphosphorylation, 
a pathological feature of AD, increases with 
anesthetic exposure.[29] This causes significant 
learning and memory impairments in elderly 
rodents.[30,31]

Enhanced brain insulin signal enhances 
memory in cognitively healthy people, indicating 
its neuroprotective features. These results indicate 
that increasing brain insulin concentrations in 
AD patients could prevent or slow down the 
development of this debilitating disease.[20]

In a clinical study on patients with AD,[32] 
patients given placebo or 20 or 40 IU insulin 
intranasally for four months and a positron 
emission tomography was performed before 
and after patients received intranasal insulin. 
Alzheimer's Disease Rating Scale was used to 
evaluate results, which showed that there was an 
improvement in delayed memory and cognitive 
function in the insulin group.

A single dose of intranasal insulin acutely 
improved memory in older adults with AD.[12] 
Insulin was effective in improving verbal memory 
test performance in the AD group. However, 
among these groups, only women with the 
Apolipoprotein-e4 (APO-e4) allele were unaffected 
by administration of high doses of insulin.[32] In 
another study, APO-e4 positive AD patients were 
less responsive to insulin. Given that APO-e4 
carriers represent 40-65% of the late-onset AD 
population, it is suggested that intranasal insulin 
may have limited therapeutic use.[33] Although 
the studies conducted so far are promising, more 
clinical studies are needed. Little is known about 
the mechanism by which intranasally administered 
insulin reaches the brain. Some hypotheses 
regarding intranasal delivery of insulin to the brain 
include transport along axon bundles of olfactory 
receptor cells on the roof of the nasal cavity, 
transport along the trigeminal nerve pathway, 
and via the rostral migration flow.[34] Recent 
studies have shown that the rapid distribution 
of intranasally administered molecules via the 
olfactory tract or trigeminal pathway involves the 
bulk flow within the perivascular space of cerebral 
blood vessels.[35] All of these studies support 
that intranasally administered insulin is carried 

along the nasal epithelium. Ongoing studies are 
examining the regional distribution and course of 
action of administered insulin to investigate the 
effects on cellular mechanisms of brain intake and 
cognition in rodent models of AD.[20]

erythropoietin

Erythropoietin (EPO) is a hematopoietic 
growth factor[36] and a glycoprotein cytokine 
involved in the regulation of erythropoiesis. 
It also has biological functions such as 
non-hematopoietic neuroprotection and 
neurogenesis.[37] For these reasons, EPO has 
begun to be used as a therapeutic agent for 
neurodegeneration.[36]

The use of EPO in clinical applications 
has not yielded positive results. This is due 
to the erythropoietic effect of EPO.[38] The 
use of recombinant human EPO (rh-EPO) in 
neurological diseases increases hematocrit 
and blood viscosity. This condition causes 
cardiovascular diseases such as infarction or 
stroke. To solve this problem, EPO derivatives 
lacking erythropoietic activity but preserve 
neuroprotective activity against neuronal injury 
have begun to be used.[39] Neuro-EPO was 
developed as a non-erythropoietic derivative of 
EPO with chemical modifications.[37]

Neuro-EPO is a recombinant human 
glycoprotein produced in Chinese hamster ovary 
cells and contains low sialic acid. Its most 
important feature is that it lacks erythropoietic 
activity while exhibiting high neuroprotective 
properties.[40] Neuro-EPO is rapidly degraded 
in the liver and is therefore more suitable 
for intranasal administration.[41] Thanks to the 
intranasal administration, it quickly reaches the 
brain and does not stimulate erythropoiesis after 
acute treatments.[40] The neuroprotective effects 
of Neuro-EPO, such as improving of cognitive 
function after stroke, have been studied in 
animal models of stroke.[40] In one study, Neuro-
EPO was intranasally administered in doses 
of 62, 125 and 250 µg/kg in non-transgenic 
Alzheimer rodent models. Results of the study 
indicated that intranasal administration of Neuro-
EPO prevented Ab25-35 toxicity in the rodent 
hippocampus and showed a strong potential 
protection against amyloid toxicity. Apart from 
a few differences depending on dosage, Neuro-
EPO showed a positive effect in the treatment of 
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memory loss. Doses such as 125 and 250 µg/kg 
were effective in most of the tests. However, 
the dose of 125 µg/kg showed a prolonged 
effect lasting up to 22 days.[42] Erythropoietin 
directly affects synaptic plasticity, especially in 
the hippocampus.[43,44] It has been determined 
that EPO increases primary hippocampal 
neuronal networks. That is, EPO improves 
hippocampus-derived memory by enhancing 
plasticity, synaptic connections, and neuronal 
networks.[44] Erythropoietin has a protective 
effect against inflammatory pathologies. TNFa 
and IL-1b released by A25-35 toxicity are blocked 
by Neuro-EPO. This neuroprotective ability of 
EPO is due to its ability to provide extrinsic cell 
homeostasis, by modulating microglial activation 
and controlling cytokine release.[45] Different 
forms of EPO show different affinities in 
activating EPO receptors. Higher concentrations 
are needed for the low sialic acid form of EPO 
to activate EPO receptors.[45] Another important 
feature of Neuro-EPO is that it can produced to be 
biologically similar to endogenous EPO without 
chemically modification, therefore causing less 
side effects in long-term use.[42]

Erythropoietin selectively induces the synthesis 
of the neuroglobin protein in damaged regions, 
providing angiogenesis and protection of the 
vascular endothelium. Lost functions in damaged 
regions of the brain are preserved by ensuring 
homeostasis.[42]

Intranasally EPO is currently being tested 
for the treatment of stroke.[40,46] Studies on 
intranasal EPO applications in neurodegenerative 
pathologies are ongoing.[42]

exosomes

Microglial cells are the brain’s macrophages. 
Microglial cells contribute to inflammation by 
producing interleukin in inflammatory diseases 
such as Alzheimer's. Therefore, it makes sense 
to target microglial cells for anti-inflammatory 
treatments.[47] No specific strategy for targeting 
brain microglial cells is in practice.[48] Drugs 
that target inflammatory cells without damaging 
normal tissues have been developed, but they 
do not cross the BBB.[49-51] Therefore, exosomes 
have been used to deliver anti-inflammatory 
drugs to the brain via a non-invasive intranasal 
route.[48] One of these anti-inflammatory drugs is 
curcumin, a natural polyphenol found in Curcuma 

longa (turmeric) rhizomes. Curcumin is anti-
inflammatory, antineoplastic, antioxidant, and 
chemopreventive.[52-54]

Since curcumin has poor solubility and poor 
bioavailability, it poses problems in clinical 
application.[55] To overcome this, exosomes have 
been used as nanoparticle drug carriers. Exosomes 
are 30-100 nm sized nanoparticles that can 
be secreted into the extracellular environment. 
Curcumin was loaded into exosomes at 22°C and 
then subjected to sucrose gradient centrifugation. 
Thus, curcumin was encapsulated to exosomes, 
increasing its in vitro solubility, stability, and 
bioavailability.[56] In order to demonstrate the 
therapeutic use of curcumin with exosomes 
(Exo-cur), mice in a lipopolysaccharide (LPS)-
induced inflammatory state were used. Curcumin 
was loaded into exosomes and administered 
intranasally. The presence of curcumin in brain 
lysates was identified using high performance 
liquid chromatography one hour after Exo-cur 
application. The presence of curcumin in brain 
lysates was observed for up to 12 hours. This 
proves that microglial cells are selectively targeted 
by exosomes. Subsequently, a decrease in the 
number of activated inflammatory microglial cells 
was observed in the brains of LPS-treated mice. 
Since exosomes can be delivered to the brain in a 
rapid and selective manner, they are regarded as 
a vehicle of drug delivery.[47]

Studies have shown that brain microglial cells 
are targeted by exosomes, but do not address 
the mechanism of this selectivity. It is unknown 
whether exosomes enter recipient cells through 
the endosomal route,[57] or whether exosomes 
derived from T cells use the endosomal route for 
entry into microglial cells. The degree of exosomal 
entry into various regions of the brain and spinal 
cord, and whether or not glial cell populations 
like astrocytes are targeted by exosomes are 
also unclear. It is also unknown whether or not 
exosome uptake by microglial cells in the brain 
depends on inflammation, or whether it increases 
parallel to inflammation. When these questions 
are answered, it is thought that the applicability 
of intranasal exosome technology to neurological 
diseases will become clear.[47]

mesenchymal stem cells

Alzheimer's disease is a disease of complex 
mechanisms that does not originate from a 
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single cause. Therefore, approaches to target the 
complex pathology of the disease are needed. It 
is thought that stem cells applications will provide 
multi-targeted therapies required for the solution 
of the disease.[58] The most important issue before 
starting stem cell therapy is selecting the correct 
stem cell. Mesenchymal stem cells (MSC) can be 
obtained from many types of cells and have ease 
of application. For these reasons, it is the most 
frequently studied type of stem cell.[59]

Mesenchymal stem cells are neuroprotective 
stem cells with anti-amyloidogenic activities.[60] 
Mesenchymal stem cells has a therapeutic effect 
on AD. Mesenchymal stem cells administration 
demonstrated anti-inflammatory and anti-amyloid 
properties in animal models of AD, resulting 
in improved memory.[59,60] Therefore, it is also 
promising for the treatment of various neurological 
diseases.[61]

Mesenchymal stem cells therapeutically 
restore degenerated neurons, provide 
neuroprotection through secretory factors, exert 
immunomodulatory effects on cells responsible 
for disease development, and proliferate 
endogenous cells.[62] However, implantation risks 
limit its clinical usage. These limitations include: 
the process of invasive cell isolation, loss of 
potency, limited lifetime, large-scale expansion 
cost[63] and a low possibility of uncontrolled cell 
proliferation.[63,64]

It has been stated that MSC act through 
paracrine mechanisms by releasing bioactive 
components when exposed to an injured 
environment, rather than through direct 
engraftment. Although studies have demonstrated 
the neuroprotective and anti-inflammatory effects 
of MSC in various disease models,[63,64] this was 
not observed in AD mouse models.[58] Studies 
have demonstrated that secretomes derived from 
MSC in vitro in an AD environment (MSC-CS) 
fully replicate multiple neuro-reparative activities 
in implanted mice.[58]

In transgenic mice with AD aged 22 to 25 
months, repeated intranasal administration of 
MSC-CS resulted in a decrease in cortical and 
hippocampal plaque burden, the number of 
surrounding activated glial cells, and expression 
of the phagocytic marker CD68. However, the 
ability of MSC-CS to reduce the level of AbO 
suggests that MSCs have strong therapeutic 

potential.[65,66] Mesenchymal stem cells-CS also 
reduces hippocampal atrophy and neuronal 
damage in the brains of transgenic mice.

Long-term MSC-CS treatment has yielded 
positive results.[58] This is attributed to the self-
renewing, neuroprotective, and regenerative 
abilities of MSCs.[67] Mesenchymal stem cells 
treatment eliminates brain atrophy by plaque 
reduction and by decreasing in amyloid beta 
oligomer (AbO) concentrations. Thus, a preclinical, 
non-invasive, and continuous treatment model has 
been to reverse functional and structural damage 
in elderly AD mice.[58]

rifampicin

Most studies up to now have investigate 
methods to eliminate the pathogenesis of 
neurodegenerative dementia such as cerebral 
accumulation of amyloid oligomers and tauopathy 
to treat AD.[68,69] Clinical studies have found that 
these treatments do not provide particularly good 
results in the cognitive levels of patients.[70,71] 
Such negative consequences have led to the 
introduction of rifampicin, an antibiotic that can 
be taken orally, has few side effects, and can 
reduce neurotoxic oligomers to a large extent, as 
a new method of preventing the disease.[72] 

Rifampicin has been shown to have preventive 
effects against AD under certain conditions.[73] 
Therefore, preventive treatment should be initiated 
before the start of memory problems.[74]

Among patients without memory decline, 
having AD-type hypometabolism is sufficient 
reason to begin preventive therapy. Rifampicin 
has been used as a preventive treatment. 
Its effective dosage was considered to be 
450 mg/day or higher (e.g. 600 mg/day). 
Rifampicin treatment must be continued for 
at least 12 months to achieve positive results 
in the elderly. It is thought that the memory 
impairment can be prevented if rifampicin is 
used continuously for several years.[73]

Orally administered rifampicin reduces 
amyloid beta (Ab) and tau pathologies in mice. 
On the other hand, long-term use is not preferred 
because it has adverse effects such as liver damage. 
This situation has prompted scientists to seek a 
safer route of rifampicin administration. Therefore, 
the therapeutic efficacy and safety of rifampicin 
was evaluated by administering rifampicin 
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treatment for one month by oral, intranasal, and 
subcutaneous routes to transgenic AD mouse 
models. The results of the experiment indicated 
that intranasal or subcutaneous administration 
was better than oral administration at improving 
memory. In addition, a decrease was observed 
in neuropathologies such as Ab oligomer 
accumulation, abnormal phosphorylation of 
tau, and loss of synapses. Pharmacokinetic 
studies show that the highest rifampicin level 
in the brain is achieved with the intranasal 
rifampicin administration strategy. Due to its 
ease of administration and non-invasive nature, 
intranasal administration is a reasonable option 
for long-term rifampicin dosages. The inexpensive 
availability of rifampicin also increases the drug’s 
potential for long-term use.[75]

Many attempted methods to treat AD have 
failed. This has steered researchers towards 
different approaches. Intranasal administration 
provides direct delivery to the CNS unlike 
oral and parenteral routes. Since the olfactory 
nerve cells and trigeminal nerves are in direct 
contact with both the environment and the 
CNS, it is a promising non-invasive method to 
cross the blood brain barrier. In this manner, 
direct drug passage from the olfactory region 
and respiratory epithelium to the brain can 
be achieved, therefore allowing the treatment 
of the neurological disorder, AD. Advantages 
compared to other drug administration routes 
include rapid onset of action, avoidance of 
the presystemic metabolism of the intestines 
and liver, reduced systemic exposure, direct 
administration to the brain and CSF, ease of 
application, and better patient compliance. The 
limitations of this route are mucociliary clearance 
and poor nasal permeability of intranasally 
administered drugs. Many agents are applied or 
attempted to be applied with this route. Studies 
on mouse models have demonstrated that the 
intranasal administration of substances such as 
insulin, erythropoietin, exosomes, MSC, and 
rifampicin is applicable for the treatment of AD. 
Clarifying the uncertainties in treatment doses 
and mechanism of action will help to evaluate 
the applicability of these agents in AD treatment.
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