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ABSTRACT

Schizophrenia is a genetically related mental disorder in which most genetic changes occur in non-coding regions of the human genome. 
In the past decade, an increasing number of non-coding regulatory RNAs (ncRNAs), including microRNA (miRNA) and long non-coding 
RNAs (lncRNAs), have been strongly associated with schizophrenia. However, understanding the workings of ncRNA and genetic mutations 
in the pathophysiology of schizophrenia has failed due to insufficient technology and lack of appropriate animal models to effectively 
manipulate ncRNA genes. Recently, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated nuclease 9 
(Cas9; CRISPR/Cas9) has been developed to enable researchers to overcome these challenges. This review article mainly focuses on the use of 
CRISPR/Cas9 editing of these regions to demonstrate the causal relationship between mutations in non-coding regions of genomic DNA that 
express schizophrenia-related ncRNAs and the pathophysiology of schizophrenia. Furthermore, although CRISPR/Cas9 technology is still in 
its infancy and immature for use in the treatment of diseases, its potential to transform this advanced technology into a clinical treatment for 
schizophrenia will be discussed. This review describes the application of powerful and viable CRISPR/Cas9 technology to manipulate ncRNA 
genes associated with schizophrenia.
Keywords: CRISPR/Cas9, gene editing, lncRNA, miRNA, Non-coding RNA, schizophrenia.

Schizophrenia is a severe mental disorder 
associated with neurodevelopmental 
abnormal i t y in which pat ients 
exhibit both mental and behavioral 
impairment.[1] Most scientific evidence has 
shown that approximately 80% of schizophrenia 
cases are genetically transmitted.[2] Decades 
of research have shown that the interaction 
of genes and environmental factors greatly 
contributes to schizophrenia.[3] It has been 
found that the majority of genetic changes 
occur in non-protein-coding regulatory RNA 
(ncRNA), particularly micro RNA (miRNA) 
and long non-coding RNAs (lncRNA). miRNA 
and lncRNA are two regulatory ncRNAs that 
do not code proteins and differ in function, 
location, and size. miRNAs play important 
roles in post-transcriptional destabilization 

of messenger RNA (mRNA), translational 
suppression, or regulation of both molecular 
mechanisms.[4,5] lncRNAs are defined as non-
protein-coding regulatory ncRNAs longer than 
200 nucleotides (nt) in length. Although the 
function of lncRNAs is not as well understood 
as the function of miRNAs, recent studies 
have provided a better understanding of their 
role and have shown an association with 
psychiatric disorders such as autism, bipolar 
disorder, and major depression, including 
schizophrenia.[6-10] Since miRNAs and lncRNAs 
are highly expressed in brain tissue because 
they regulate genes necessary to maintain brain 
development and function, as abnormal brain 
development and maturation has been proven 
to be linked to schizophrenia. For example, 
manipulation of schizophrenia-associated 
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miRNAs such as miR-132/miR-121 and miR-219 
has demonstrated changes in neuronal activity 
and brain plasticity at synapses.[11-13] Further 
studies have revealed that these miRNAs 
directly regulate the synthesis of proteins 
required for synaptic plasticity or interact 
with factors likely to regulate permanent 
neuroplastic changes.[13,14] These recent findings 
of schizophrenia-associated miRNAs suggest 
that dysregulation of miRNAs and targeted 
genes is crucial for our understanding of the 
underlying biological causes of schizophrenia. 
Considering the multitude of miRNA alterations 
and their broad impact on target genes in 
schizophrenia, schizophrenia-associated 
miRNAs may be significant in the pathogenesis 
of schizophrenia. In past years, an increasing 
number of schizophrenia-associated ncRNAs 
such as miR-137, lncRNA Gomafu, etc. have 
been identified, and genetic changes in these 
ncRNA genes have strengthened the implications 
for the pathogenesis of schizophrenia.[8,15-17] 
However, the functional roles of these genetic 
variations in the development and progression 
of schizophrenia are not yet well understood. 
In fact, the functioning of these ncRNAs in 
schizophrenia development and the correction 
of genetic changes in genomic DNA that 
are key to developing new treatments for 
schizophrenia and the effective manipulation 
of these ncRNA genes have not been realized 
due to insufficient technology. In light of 
new developments, it will be possible to 
create or correct mutations in animal models 
using new genetic tools in genomic DNA, 
including coding and non-coding regions 
in schizophrenia, which will be the key to 
developing new treatments for schizophrenia. 
In recent years, a large number of miRNAs 
and lncRNAs associated with schizophrenia 
have been identified and characterized, thanks 
to a range of advanced technologies, including 
next-generation sequencing, high-resolution 
microarray, and genotyping. Understanding 
the genetic variations of ncRNAs in the 
development of schizophrenia has benefited 
from advanced technology and new tools from 
biology and other fields of science. Clustered 
Regularly Interspaced Short Palindromic 
Repeats (CRISPR)/CRISPR-associated nuclease 
9 (Cas9) (CRISPR/Cas9) is a recently developed 
revolutionary gene editing technology that can 

effectively manipulate non-coding regions of 
genomic DNA in human cell lines and animal 
models.

The Role of NoN-codiNg RNAs iN 
SchizophReNiA

The role of complex genetic components in 
the etiology of schizophrenia has been strongly 
proven by a large quantity of evidence. Indeed, 
the heritability of schizophrenia is approximately 
80%.[2] Thus, new genomic tools offer hope 
for our understanding of the profound etiology 
of this complex genetically related psychiatric 
disorder. Genome-wide association studies have 
revealed a number of strong susceptibility loci 
for schizophrenia, most of which are located in 
non-coding regions of the genome for transcription 
of miRNAs and lncRNAs. Numerous studies 
have shown that most miRNAs and lncRNAs 
are highly expressed in the brain and that 
abnormal expressions due to genetic mutations 
and effects on target gene levels cause defective 
development, resulting in suppression of synaptic 
activity and mGluR (Metabotropic glutamate 
receptor)-dependent synaptic transmission. Since 
this affects the plasticity of the hippocampus, 
it may help us understand the pathogenesis 
of schizophrenia, among other neurological 
disorders.[18-24] In recent years, comparing the 
expression of different levels of miRNAs involved 
in schizophrenia with the help of high-throughput 
microarray techniques compared to control groups 
has identified and better elucidated a large number 
of dysregulated miRNAs in schizophrenia.[25,26] A 
genome-wide association study in a large-scale 
population revealed non-coding genes associated 
with schizophrenia, including miRNA genes 
and prominently miR-137.[16,17] The discovery of 
loci associated with schizophrenia has received 
great attention in this field, and the gene for 
a small ncRNA, miR-137, is located at locus 
1p21.3. A large-scale genome-wide association 
study conducted by Franke et al.[27] included 
more than 40,000 participants and found that 
rs1625579 polymorphism in the miR-137 gene 
was strongly associated with schizophrenia.[17] To 
date, many in-depth studies have supported the 
association between miR-137 and schizophrenia 
and variant rs1625579 of the miR-137 gene 
as an indicator of early onset of psychosis in 
schizophrenia.[28] In a cohort study of 1,430 
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schizophrenia patients compared to 1,570 healthy 
individuals in a Chinese Han population, analysis 
of rs1625579, a single nucleotide polymorphism 
of the miR-137 gene was conducted; rs1625579 
showed significant differences in allele frequencies 
between schizophrenia subjects and healthy 
control subjects,[29] while the single-nucleotide 
polymorphism rs66642155 allelic variant was 
positively correlated with the age of onset of 
schizophrenia and the degree of symptoms.[30] The 
molecular mechanism by which genetic variants of 
miR-137 present an increased risk of schizophrenia 
has also been associated with reduced fronto-
striatal white and gray matter integrity, but 
no change in brain plasticity,[31,32] and may 
cause symptoms of poor concentration, low 
processing speed, cognitive impairment, etc.[33] 
In a recent detailed study of the zebrafish model 
by Giacomotto et al.,[34] it was demonstrated that 
suppression of miR-137, possibly responsible for 
the behavioral phenotype and associated with 
schizophrenia, resulted in impairment in synaptic 
functions and behavior in the neural network.

Apart from miRNAs, lncRNAs have emerged 
as one of the most important classes of ncRNAs 
in the regulation of gene expression, and it has 
been stated that changes and dysregulation 
of lncRNAs play an important role in the 
pathogenesis of various diseases. Only a few 
lncRNAs associated with schizophrenia have 
been identified, unlike miRNA associated with 
the large number of studied schizophrenia cases. 
Among them, Myocardial Infarction Associated 
Transcript (MIAT) also known as RNCR2 
(retinal non-coding RNA 2), is the most recently 
discovered lncRNA and was strongly associated 
with schizophrenia. MIAT was first described 
by Blackshaw et al.[35] as a new member of the 
lncRNA family and was found to play a role in 
the regulation of differentiation of retinal cells 
in the embryo and associated with myocardial 
infarction.[36-38] MIAT is abundantly expressed in 
the nuclei of neurons during adult development. 
This lncRNA is also referred to as lncRNA 
Gomafu,[15] a Japanese word that reflects its 
spotted pattern in the nucleoplasm. Despite 
the 22q12.1 locus documented to be associated 
with schizophrenia and its expression in the 
nervous system, the link between this lncRNA 
and schizophrenia was disclosed in 2014.[8] Barry 
et al.[8] first demonstrated the strong correlation 

between MIAT and schizophrenia and elucidated 
the mechanisms, including downregulation 
of Gomafu in patients with schizophrenia: 
Rapidly decreasing Gomafu levels in response 
to neuronal activation and Gomafu-mediated 
impaired alternative splicing directly binds to two 
splicing factors, QK1 and serine/arginine-rich 
splicing factor 1, ultimately leading to abnormal 
regulation of two schizophrenia genes DISC-1 
and ErbB4,[4,38] resulting in reduced activity 
of parvalbumin interneurons.[39] Shortly after 
identifying the association between lncRNA 
Gomafu and schizophrenia, its genetic alterations 
were subsequently reported to be associated with 
schizophrenia in different populations.[10] An 
analysis of genetic variants of lncRNA Gomafu 
in 1,255 cases diagnosed with paranoid 
schizophrenia compared to 1,209 healthy 
individuals in the Chinese Han population found 
that rs1894720 polymorphism was significantly 
associated with paranoid schizophrenia.[10] Aside 
from lncRNA Gomafu, there are other lncRNAs 
associated with mental disorders such as Evf2, 
BDNF-AS, and DISC-2, which have been 
previously reviewed and found to be associated 
with schizophrenia.[9]

cRiSpR/cAS9 ANd MeThodS
Originally well described as an adaptive 

immune defense mechanism in bacteria, 
the CRISPR/Cas9 system is an emerging 
revolutionary and viable method for precise 
genome editing of a variety of organisms, 
including plants, animals, and even humans. 
With this method, genomic DNA stretches 
can be edited easily and precisely.[40-46] The 
CRISPR/Cas9 system usually consists of two 
components: Cas9 protein and guide RNA 
(gRNA). The Cas9 protein guided by gRNA is 
recruited to the target site and can cleave the 
genomic DNA at a specific site. The past years 
have witnessed the emergence of this innovative 
technology and dramatic advances in genomic 
DNA editing.[47] CRISPR/Cas9 technology can 
be used to manipulate genomic DNA elements 
targeting not only coding regions but also 
non-coding; these elements include small and 
long ncRNAs such as miRNAs and lncRNAs. 
Editing genomic DNA elements targeting 
non-coding regions is particularly important 
because silencing these ncRNA genes with 
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current, conventional RNA interference (RNAi) 
technology often fails due to their resistance 
to RNAi techniques.[47-50] Recently, a modified 
CRISPR/Cas9 method known as Double 
Excision CRISPR Knockout (DECKO) is applied, 
in which a lentiviral vector expressing two 
gRNAs simultaneously is used for manipulating 
and editing genomic DNA fragments from 100 to 
3,000 base pairs (bp) in length; many obstacles 
have been overcome with the application of 
the method.[51,52] To date, a number of ncRNA 
genes in genomic DNA have been successfully 
silenced, including miRNAs (miR-21, miR-29a) 
and lncRNAs (UCA1, MALAT1). The MALAT1, 
human HCT116, Hela, and HEK293T cell 
lines have been reduced by up to 98%. The 
promoter region of the MALAT1 gene has been 
successfully edited with DECKO,[51,53,54] which 
is an accepted method aimed at silencing or 
amplifying gene expression so that the gene 
loses or regains its function. RNAi with specific 
small interfering RNAs (siRNAs) are widely 
used to silence a desired gene encoded by the 
coding regions of genomic DNA generally in 
the cytoplasm.[55] However, siRNAs designed 
to target ncRNA genes, including lncRNAs 
and miRNA genes, have been discovered to be 
inefficient, mainly because many lncRNAs are 
located in the nucleus.[49] Therefore, it has been 
difficult to achieve successful knockdown of a 
desired lncRNA gene. Recently, scientists from 
independent research groups have applied a 
modified CRISPR/Cas9 system to target ncRNA 
genes located in the nucleus in the zebrafish 
genome, resulting in efficient knockdown of 
a number of ncRNAs, including miRNAs.[56] 
miRNAs in human cell lines and lncRNAs 
in animal models, particularly lncRNAs in 
rats,[52,53] have provided an understanding of the 
biological roles of ncRNAs in the pathogenesis of 
schizophrenia. The key feature of the modified 
CRISPR/Cas9 system is the use of double 
gRNA, which creates two breaks at certain sites 
and allows deletion of a larger fragment.[53]

ApplicATioNS of cRiSpR/cAS9 
iN SchizophReNiA ANd oTheR 

diSeASeS
Medications form the mainstay of treatment 

for schizophrenia, and along with psychosocial 
interventions, they are widely used to manage 

schizophrenia. However, schizophrenia drugs 
often cause serious side effects; therefore, a 
majority of patients with schizophrenia do not 
take medications, causing this devastating mental 
disorder to remain uncontrolled. Because a strong 
genetic component is involved in the pathogenesis 
of schizophrenia, multiple changes in the 
genomic DNA of neurons have been implicated as 
causal factors, but fortunately, great strides have 
been recently made both in identifying critical 
genomic regions and in developing advanced 
genetic technologies. Genetic mutations in 
the manipulable miRNA and lncRNA genes 
in the genomic DNA of neurons have been 
directly linked to schizophrenia. The CRISPR/
Cas9 system has provided a powerful method 
for not only correcting mutations in inherited 
genetic diseases, but also gene mutations in 
disease-related genomic DNA, including ncRNA 
genes. A research team from Duke University 
recently investigated the application of CRISPR/
Cas9 to treat Duchenne muscular dystrophy 
(DMD), a debilitating genetic disease caused by 
mutation in one of the exons of the dystrophin 
gene.[57] Researchers have successfully treated 
a human disease in a living mouse model for 
the first time[57] with CRISPR/Cas9 gene editing 
technology. Similar results from two other 
research groups from Harvard University and 
the University of Texas were also impressive.[58,59] 
These three independent research groups have 
demonstrated that after restoring one of the 
exons in the dystrophin gene with the CRISPR/
Cas9 technique, correction of the gene can 
result in restoration of functional dystrophy 
and increased muscle strength.[56-58] In addition 
to DMD, the CRISPR/Cas9 method has also 
been used in various other genetic diseases such 
as sickle cell anemia and Alzheimer's disease, 
thereby correcting point mutations, restoring 
defective genomic DNA, and thus treating the 
diseases.[60-62] Recently, a research team from 
Sun-Yatsen University in Guangzhou, China, 
investigated for the first time the use of the new 
CRISPR/Cas9 system to edit the thalassemia-
causing gene in human embryos.[63,64] As a result, 
the target gene retains its restorative form in a 
number of human embryos. Recently, successful 
application of human induced pluripotent stem 
cells (iPSCs) using the CRISPR/Cas9 gene 
editing method has been reported to establish a 
disease model[65] and effectively treat a number 
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of diseases including epidermolysis bullosa,[66] 
b-thalassemia,[67] a1-antitrypsin deficiency,[68] 
AIDS,[69] Niemann-Pick Type C,[70] and 
DMD.[71] Therefore, this new approach has held 
tremendous promise for gene therapy for many 
other types of diseases, including schizophrenia.

conclusion

A powerful genome editing tool such as 
CRISPR/Cas9 has brought many innovative 
applications and perspectives for both biological 
research and treatment of diseases, including the 
complex schizophrenia disease. Application of this 
technology in schizophrenia-associated ncRNAs 
will open a new perspective for schizophrenia 
research to advance our understanding of the 
biological function of ncRNAs and facilitate 
the creation of animal models with specific 
mutations. Since schizophrenia is a complex 
disorder involving multiple genetic alterations of 
ncRNAs, the modified CRISPR/Cas9 approach 
will allow these ncRNAs to be degraded to 
investigate whether or not disruption of ncRNA 
genes causes schizophrenia. Besides silencing 
ncRNA genes, the CRISPR/Cas9 system can 
deliver regulatory components to target genes, 
or activate or upregulate target gene expression. 
The CRISPR/Cas9 method can also allow 
activation of genes at the transcriptional level, 
providing researchers with an understanding 
of the biological role of a specific gene in the 
development and progression of schizophrenia. 
Knockout or activation of an ncRNA gene using 
the modified CRISPR/Cas9 system has several 
advantages: it is more effective than RNAi and 
can target multiple genes simultaneously. In 
regards to schizophrenia-associated ncRNAs miR-
137 and Gomafu, it is possible to simultaneously 
target these two ncRNAs and explore whether 
miR-137 and Gomafu each, alone, or in 
combination, influence the development and 
progression of schizophrenia. The modified 
CRISPR/Cas9 system opens the possibility of 
ncRNAs manipulating any exon fragment and 
exploring the biological function of these ncRNA 
genes in schizophrenia.

The main bottleneck of schizophrenia 
research is the absence of animal models 
to prove the causal relationship between 
the genetic defects and pathophysiology of 
schizophrenia, as painstaking work is required 

not only to model the pronounced symptoms, 
but also in creating animal models with specific 
genomic DNA mutations. Due to a number of 
advantages, the CRISPR/Cas9 system provides 
a new perspective on developing animal models 
for schizophrenia research. With the help of the 
CRISPR/Cas9 system, specific mutations of the 
target ncRNA gene can be introduced into the 
embryo and the restorative form of the ncRNA 
gene can be reintroduced into the gene in a rat 
or mouse embryo. The rat or mouse and their 
offspring will contain the mutation or restoration 
of the original form, allowing researchers to 
directly compare the symptoms of the resulting 
experimental and control groups. Disruption of 
these genes will determine how the development 
and progression of schizophrenia is affected, 
thereby identifying underlying molecular 
pathways in animal models. The created 
animal models can also be used to test the 
efficacy of drugs or other potential therapeutic 
approaches in the treatment of schizophrenia. 
In fact, it usually takes up to two years for 
the animal model created by conventional 
procedures to acquire certain mutations in the 
offspring because multiple breeding steps are 
needed, while generating the animal model 
using the CRISPR/Cas9 approach is less costly 
and takes about two months. Moreover, in 
combination with template DNAs and the use 
of multiple gRNAs, the CRISPR/Cas9 system 
can introduce any number of mutations into the 
embryo of an animal or its offspring. With these 
promising results in mammalian and human 
cells, CRISPR/Cas9 holds great therapeutic 
potential for treating human inherited diseases, 
including schizophrenia and perhaps other 
inherited mental disorders.
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