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ABSTRACT

High-efficiency oxidative phosphorylation plays a key role in the progression of many diseases. There is growing evidence of methylene blue’s 
protective and reversing actions against neurodegenerative and inflammatory bowel diseases through different mechanisms. In Alzheimer’s 
disease (AD), oligomeric amyloid beta accumulates in the mitochondria and contributes to mitochondrial dysfunction, which occurs before 
significant plaque deposition. Methylene blue provides an alternative mitochondrial electron transfer pathway, switching from high-efficiency 
oxidative phosphorylation to the low-efficiency aerobic glycolysis pathway by receiving electrons from NADH in the presence of complex I and 
transferring them to cytochrome C. The second mechanism is the inhibition of active caspases, especially Caspase-6, a cysteinyl protease causing 
inflammation and cell death, which has been associated with age-dependent cognitive decline and the pathology of sporadic and familial AD. The 
third mechanism is the reversal of tau aggregation by oxidizing cysteine residues in tau and forming a more stable monomer, thus blocking tau-tau 
bindings as well as clearing tau pathology through increased autophagy. In regards to inflammatory bowel disease, reducing oxidative stress and 
attenuating inflammatory pathways inhibits epithelial destruction in acetic acid-induced colitis. Methylene blue has an anti-colitis effect, mainly 
relying on its mitochondrial efficacy-restoring, antioxidative, anti-inflammatory, and anti-apoptotic properties. In summary, methylene blue is a 
promising agent for both AD and inflammatory bowel disease due to its beneficial effects as well as its low cost and high accessibility.
Keywords: Alzheimer’s disease, inflammatory bowel disease, methylene blue.

Methylene blue (MB), a heterocyclic 
phenothiazine-based aromatic chemical 
compound, was originally synthesized as 
a textile dye but gained a significant role in 
the treatment of various bacterial and viral 
infections, methemoglobinemia, carbon monoxide 
poisoning, vasoplegic syndrome, and ifosfamide 
neurotoxicity, as well as in the surgical staining of 
the parathyroid glands or fistula. The repurposing 
of previously established drugs is being substantially 
considered in modern pharmacology, in terms 
of time- and money-saving features in addition 
to their previously achieved extensive safety 
testing records. Consequently, MB has become a 
promising drug in the treatment and decelerating 

the progression of certain diseases, such as 
Alzheimer’s disease (AD) and inflammatory bowel 
disease (IBD).[1]

PubMed, Google Scholar, and UpToDate 
were searched for the keywords “methylene 
blue”, “Alzheimer’s disease”, “inflammatory bowel 
diseases”, “methylene blue and Alzheimer’s 
disease”, and “methylene blue and inflammatory 
bowel disease”. Abstracts were read by the authors 
of the present article and the most relevant studies 
and reviews were analyzed. After the overlapping 
studies and reviews were excluded, the remaining 
62 articles were grouped according to their topics 
and the similarity of their contents.
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Alzheimer's disease is a progressive 
neurodegenerative disorder causing severe 
disability or death and reduces the quality of life 
for both patients and families. Alzheimer's disease 
remains the most common cause of dementia 
worldwide, and its prevalence continues to rise 
due to the aging world population, affecting 1 in 9 
people over the age of 65 in the United States. 
This rate approximately matches the estimated 
prevalence in Turkey.[1-3] As it stands, there is 
no effective treatment for AD that can halt or 
significantly slow the patient’s inevitable decline. 
In this regard, this makes AD unique among the 
world’s major killers, as it is one of the few top 
causes of death with little to no preventative or 
therapeutic measures.[1]

Alzheimer's disease is histologically 
characterized by the classical accumulation 
of senile plaques and neurofibrillary tangles 
(NFT), consisting of hyperphosphorylated tau 
protein[4] and amyloid beta (Ab) oligomers, which 
are products of the proteolytic cleavage of 
membrane-bound amyloid precursor protein 
(APP) by g-secretase and b-secretase. Amyloid 
precursor protein processing of Ab can proceed 
down one of two pathways, the first of which 
is the non-amyloidogenic pathway, which starts 
with APP cleavage by a-secretase that yields 
a soluble N-terminal fragment, sAPP-a, and a 
membrane-bound C-terminal fragment (CTF-a). 
CTF-a is further processed by g-secretase to 
yield another N-terminal soluble fragment, 
p3. The soluble fragments generated by this 
sequence do not form aggregates and are not 
neurotoxic. However, the second pathway, the 
amyloidogenic pathway, commences with APP 
cleavage by b-secretase, generating sAPP-b. 
g-secretase cleavage of the remaining CTF-b 
fragment generates Ab, which progressively 
aggregates from oligomers to plaques that 
accumulate extracellularly, that interfere with 
cellular function and activate inflammatory 
pathways.[5] Oligomeric Ab also accumulates 
intracellularly, localizing in the mitochondria, 
and contributes to mitochondrial dysfunction and 
energy deficiency in AD pathology.[6]

Until now, the main approach to AD 
therapeutic research targeted Ab. As recently 

as 2007, MB has begun to be studied in this 
capacity.[7,8] According to the studies investigating 
its treatment capacity, MB was found to be 
promising due to certain actions, one of them 
being improving cognitive function, mainly by 
promoting complex IV activity and mitochondrial 
activity.[9] Mitochondrial dysfunction is found to 
be present before significant plaque deposition 
and cognitive decline,[10-12] which makes MB a 
promising agent in the early treatment of AD 
through its complex IV activity via its electron 
cycling mechanism as well as its upregulating 
effect on heme synthesis.[9,13]

The mitochondrial activity of MB has been 
further investigated in another study, resulting 
in the discovery of its ability to provide an 
alternative electron transfer pathway. In this 
pathway, MB receives electrons from NADH in 
the presence of complex I and delivers them to 
cytochrome C. A switch from high-efficiency 
oxidative phosphorylation to the low-efficiency 
aerobic glycolysis pathway (Warburg effect) occurs, 
increasing oxygen consumption, decreasing 
glycolysis, and increasing in vitro glucose 
uptake, as well as enhancing glucose uptake and 
regional cerebral blood flow in rats upon acute 
treatment. In summary, there is growing evidence 
that enhancement of mitochondrial oxidative 
phosphorylation via alternative mitochondrial 
electron transfer may offer protective action 
against neurodegenerative diseases.[14]

Several studies have demonstrated that 
MB improves cognitive deficits induced by 
hippocampal damage by upregulating complex 
IV and ATP production, decreasing oxidative 
stress markers through methods such as electron 
cycling, and inhibiting downstream mechanisms 
and interactions such as the inhibition of 
Ab-ABAD binding, therefore preventing the 
production of associated reactive oxygen species 
(ROS), matrix metalloproteinase (MMP) failure, 
and subsequent cell death,[15-18] as well as the 
cytosolic release of pro-death factors in several 
AD models.[15,19,20]

Another study investigated the tau cysteine 
oxidation mechanism of MB to clarify whether 
MB may modulate the activity of caspases. 
Caspases are a group of cysteinyl proteases 
involved in inflammation and cell death. One 
of the effector caspases, Caspase-6 (Casp6), 
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was found to be strongly associated with age-
dependent cognitive decline and the underlying 
pathology of sporadic and familial AD.[21-28] 
Results of the study showed that MB and its 
derivatives efficiently inhibited active caspases 
in vitro, in cells, and in vivo at concentrations 
al lowing phenothiazine-mediated Tau 
disaggregation. These results indicated that MB, 
or its derivatives,[21,29] may have additional effects 
in AD by inhibiting caspases,[21,30] preventing 
caspase activation in other degenerative 
conditions,[21,31] and predisposing individuals 
undergoing chronic treatment to cancer via the 
inhibition of effector caspase-3.

Another key factor in AD pathophysiology 
is the presence of neurofibrillary tangles (NFT), 
which are aggregates of hyperphosphorylated tau 
protein (p-tau). Tau is a microtubule-associated 
protein that stabilizes neuronal microtubules as 
a natural and prevalent component of CNS. 
Tau is phosphorylated by kinases such as 
glycogen-synthase kinase 3 b (GSK3b), c-Jun 
kinase (JNK), and cyclin-dependent kinase 
5 (cdk5)[32-34] as a normal component of the 
physiological process. However, this process 
dissociates tau from microtubules and destabilizes 
them, disrupting cellular function and axonal 
transport as well as mitochondrial transport as 
mentioned above. Nevertheless, the excessive 
phosphorylation of tau aggregates and forms 
tangles, as the amount of p-tau exceeds the 
proteasome’s clearance capacity. However, it is 
still under debate whether taupathy precedes Ab 
pathology or is a consequence.[35-37]

Targeting this pathological finding, MB was 
found to reverse tau aggregation by blocking 
tau-tau binding as a consequence of inhibiting 
filament formation on the first and fourth 
repeat peptides on the tau microtubule binding 
domain[31,38,39] and prevent fibrillization by 
oxidizing cysteine residues in tau resulting in 
the formation of a more stable monomer form 
that is resistant to aggregation.[23] Another 
study showed that MB clears the tau pathology 
through increased autophagy in JNPL3 
organotypic slices, by interacting with and 
promoting the oxidation of tau cysteine residues, 
thus preventing the formation of fibrils and their 
toxic precursors.[21,23]

Lastly, MB was found to inhibit the 
aggregation of proteins that take on b-sheet 

formation in vitro, including tau.[31,39] Methylene 
blue trials in vivo have yielded mixed results. 
In a mouse tauopathy model, 1 mM MB was 
administered to the right hippocampus using a 
mini-osmotic pump. This resulted in a decrease 
in total tau levels paralleled by a decrease 
in phosphorylated (S202/T205) tau, as well 
as an improvement in behavior but without 
any remarkable effect on pathology.[41] When 
the mice were administered a therapeutically 
relevant dose of 10 mg/kg of MB in their 
drinking water for 12 weeks, there was a variable 
improvement in behavior and a decrease in 
soluble tau levels, with no change in tau tangle 
pathology. Interestingly, when the levels of MB 
in the cerebellum were measured, they were 
found to positively correlate with Morris water 
maze performance and inversely correlate with 
soluble tau levels. These results were compatible 
with previous findings suggesting that NFTs are 
likely not associated with functional deficits but 
that reducing soluble tau levels is beneficial.[40] 
These results also suggested that the putative 
therapeutic effect of MB may not be associated 
with its ability to inhibit aggregate formation. 
In zebrafish, MB inhibited the aggregation of 
a mutant form of huntingtin gene, but had 
no effect on tau pathology when an FTDP-17 
mutant tau was expressed, similar to what was 
observed in the mouse model.[41]

However, in contrast to the mouse model, 
MB treatment in zebrafish did not prevent or 
reverse the functional deficits that resulted from 
the expression of the FTDP-17 mutant tau or the 
mutant huntingtin.[41]

According to another study that reported 
a correlation between MB and taupathy, MB 
was found to clear tau filament by inducing 
autophagy[42] by reducing tau load in different 
taupathy transgenic mouse models over short-
term and long-term treatment, and this clearance 
was associated with improvement of cognitive 
deficits.[43,44] A more stable variant of the 
MB in reduced form, Leuco-Methylthioninium 
Bis (Hydromethanesulphonate) (LMTM), was 
developed[45] for use in human clinical trials to 
show both cognitive and cerebral blood flow 
improvements[46] under the name “REMBER”. 
Unfortunately, the study yielded negative 
results.[47]
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Inflammatory bowel disease is a term mainly 

used to describe two conditions: ulcerative colitis 
(UC) and Crohn's disease (CD). Ulcerative colitis 
and CD are chronic conditions that involve 
inflammation of the gut. Ulcerative colitis only 
affects the colon (large intestine), while Crohn's 
disease can affect any part of the digestive system, 
from the mouth to the anus.[48] It is estimated 
that over 1 million residents in the USA and 
2.5 million in Europe have IBD, with substantial 
expenses spent on health care.[49]

Although IBD has been thought to be 
idiopathic, it has two main attributable causes, 
including genetic and environmental factors. The 
gastrointestinal tract where this disease occurs 
is central to the immune system, and the innate 
and the adaptive immune systems are balanced 
in complex interactions with intestinal microbes 
under homeostatic conditions. However, in IBD, 
this homeostasis is disrupted and uncontrolled 
intestinal inflammation occurs.[50]

Methylene blue is conventionally used for 
staining in endocytoscopy (EC), one of the most 
novel endoscopic diagnostic procedures that 
provides up to 1,150 times optical magnification 
of the gastrointestinal mucosa. This approach 
allows real-time visualization of tissue and cellular 
structure. Endocytoscopy, along with confocal 
laser endomicroscopy, is considered in vivo 
“optical biopsy”[51] as it enables the visualization 
of cellular atypia of gastrointestinal mucosae[52] 
and detection of dysplasia or neoplasia.[53] A study 
on UC patients reported that chromoendoscopy-
guided endomicroscopy decreases the number 
of biopsies performed and significantly increases 
the per-biopsy yield of intraepithelial neoplasia. 
Endomicroscopy is an accurate tool for 
intraepithelial neoplasia detection.[54]

Several pro-inflammatory cytokines are 
involved in the progression of IBD. One of them, 
IL-6, activates signal transducer and activator of 
transcription 3 (STAT3) and has an important 
function in the inflammatory response. There is 
elevated production of IL-6 and its soluble IL-6 
receptor in UC and CD patients.[55,56] Interleukin-6 
also has a key role in the pathogenesis of UC 
and the carcinogenesis of colorectal cancers 
related to UC.[57] Moreover, it has been reported 

that IL-17 can increase the recruitment of T cells 
into the lamina propria during the inflammatory 
response. 

A previous study revealed that MB can 
efficiently inhibit epithelial destruction in acetic 
acid-induced colitis by decreasing oxidative stress 
and attenuating inflammatory pathways.[58] Other 
previous studies observed decreased expression 
of Bcl-2 and elevated levels of Bax protein in 
UC. These changes were significantly reversed 
by MB, demonstrating its anti-apoptotic effects. 
The overproduction of reactive oxygen species 
in neuronal cells can result in the collapse of 
cellular components, especially DNA, leading to 
cell death.[59] This indicates that the anti-apoptotic 
properties of MB may be partially due to its 
antioxidative effect.

In a study by El Sayed and Sayed,[60] 
the anti-colitis effect of MB was tested in 
a 2,4,6-trinitrobenzene sulfonic acid 
(TNBS)-induced colitis model. According to the 
study, the role of mitochondrial dysfunction is 
significant in the pathogenesis of TNBS-induced 
UC. On the other hand, MB restores 
mitochondrial efficacy and exerts antioxidative, 
anti-inflammatory, and anti-apoptotic effects. 
These results indicate that MB is a promising 
therapeutic agent for the management of UC 
without harmful side effects.[60] As there are 
overlaps in the pathogenesis of UC and CD, 
the mechanisms suggest that MB could also 
be administered in CD treatment and further 
related research is warranted.
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